The Crystal Structures of Semicarbazide Complexes of Copper(II) and Zinc Chlorides

BY MARIO NARDELLI, GIOVANNA FAVA GASPARRI, PIERO BOLDRINI & GIULIA GIRALDI BATTISTINI Structural Chemistry Laboratory, Institute of Chemistry, University of Parma, Italy

(Received 2 June 1964 and in revised form 27 November 1964)

Crystals of Cu[OC(NH₂)NHNH₂]₂Cl₂ and Zn₁OC(NH₂)NHNH₂]₂Cl₂ belong to the same space group $P2_1/c$, but are not isostructural. The two structures were solved and refined by means of three-dimensional Fourier methods. Coordination in both compounds is octahedral, semicarbazide acting as a bidentate ligand through oxygen and hydrazinic nitrogen. The semicarbazide molecule is planar and there are no significant differences in the bond distances between metal-coordinated semicarbazide and semicarbazide hydrochloride. Packing and possible hydrogen bonding are discussed.

Introduction

The X-ray structural analysis of bis-semicarbazidecopper(II) chloride and bis-semicarbazide-zinc chloride was undertaken in this laboratory as part of a programme concerning the coordination by divalent metal atoms of organic molecules containing oxygen.

The present study shows that coordination in these two complexes does not lead to significant differences in the bond distances of the organic molecule in comparison with semicarbazide hydrochloride. A similar conclusion was noted previously for biuret in potassium bis-biuret-cuprate(II) tetrahydrate (Freeman, Smith & Taylor, 1961) and in bis-biuret-zinc chloride (Nardelli, Fava & Giraldi, 1963).

Experimental

Crystals of bis-semicarbazide-copper(II) chloride and bis-semicarbazide-zinc chloride were obtained by slow evaporation of aqueous chloride solutions containing an excess of semicarbazide hydrochloride. When excess of metal chloride is employed, the monosemicarbazide complexes, $M[OC(NH_2)NHNH_2]Cl_2$ (M=Cu, Zn) are formed.

Crystal data

- Cu[OC(NH₂)NHNH₂]₂Cl₂. M = 284.6. Blue thick plates, optically biaxial. Monoclinic. Rotation axis for photographs: [001].
- $a = 7.56 \pm 0.01$, $b = 9.26 \pm 0.01$, $c = 6.88 \pm 0.01$ Å; $\beta = 102.2 \pm 0.2^{\circ}$,
- V=471 Å³, Z=2, $D_x=2.01$, $D_m=2.16$ g.cm⁻³ (flotation),

 $\mu = 84.1 \text{ cm}^{-1}$ (Cu Ka), F(000) = 286.

Space group $P2_1/c$ (from systematic absences).

 $Zn[OC(NH_2)NHNH_2]_2Cl_2$. M = 286.4. Colourless thin pseudo-hexagonal laminae, optically biaxial. Monoclinic. Rotation axes for photographs: [100] and [010].

- $a = 5 \cdot 13 \pm 0 \cdot 01, \ b = 7 \cdot 13 \pm 0 \cdot 01, \ c = 13 \cdot 26 \pm 0 \cdot 01 \text{ Å}; \ \beta = 109 \cdot 7 \pm 0 \cdot 1^{\circ},$
- $V = 457 \text{ Å}^3$, Z = 2, $D_x = 2.08$, $D_m = 2.10 \text{ g.cm}^{-3}$ (flotation),
- $\mu = 91.6 \text{ cm}^{-1}$ (Cu Ka), F(000) = 288.

Space group $P2_1/c$ (from systematic absences).

Cu[OC(NH₂)NHNH₂]Cl₂. *M*=209.5. Blue, pleochroic, thick short prisms, optically biaxial. Orthorhombic.

- Observed forms: $\{010\}, \{011\}, \{302\}.$
- Rotation axis for photographs: [100].
- $a = 6.9_0, b = 10.2_2, c = 8.2_6 \text{ Å},$
- V = 582 Å³, Z=4, $D_x = 2.39$, $D_m = 2.39$ g.cm⁻³ (flotation).
- Space groups $Pnma(D_{2h}^{16})$, $Pn2_1a(C_{2v}^9)$ (from systematic absences).
- $Zn[OC(NH_2)NHNH_2]Cl_2$. M = 211.4. Colourless tabular prisms, optically biaxial. Monoclinic. Rotation axes for photographs: [010], [100].
- $a = 12.7_1, b = 7.4_7, c = 14.9_5 \text{ Å}, \beta = 110.3,$
- $V = 1331 \text{ Å}^3$, Z = 8, $D_x = 2.11$, $D_m = 2.10 \text{ g.cm}^{-3}$ (flotation).

Space group $P2_1/c$ (C_{2h}^5) (from systematic absences).

Crystal data were obtained by the standard methods using the axial reflexions in equatorial Weissenberg photographs. In the case of the first compound the h0l precession photograph too was used. No particular corrections were applied.

The standard deviations were estimated on the measured values by the usual formulae.

Determination of structure factors

For the copper compound the intensities of hk0, hk1, \cdots hk5 reflexions were collected from integrated and non-integrated Weissenberg photographs (Cu $K\alpha$). 662 independent reflexions were observed out of the 831 possible reflexions. No absorption correction was made (cross-section nearly rectangular: 0.02 cm \times 0.05 cm); the absolute scale for each layer was established Table 1. Final atomic coordinates and their e.s.d.'s with ratios (e.s.d.)/ (coordinate shift) The transformation matrix from monoclinic x, y, z to orthogonal x', y', z' coordinates is:

				$\left(\begin{array}{rrr}1&0\\0&1\\0&0\end{array}\right)$	$\begin{pmatrix} \cos \beta \\ 0 \\ \sin \beta \end{pmatrix}$							
	x/a	y/b	z/c	<i>x′</i> (Å)	y'(Å)	$z'(\text{\AA})$	$\sigma(x')$	$\sigma(y')$	$\sigma(z')$	r(x)	r(y)	r(z)
							×	10 ³ (Å)				
				Cu[OC(NH	2)NHNH2]2C	2l ₂						
Cu	0	0	0	0	0	0				_		
Cl	0.2721	0.0710	0.3397	1.563	0.657	2.284	4	3	4	8	∞	6
0	-0.1408	0.1678	0.0557	-1.145	1.554	0.375	10	8	11	4	∞	∞
N(1)	-0.3933	0.2220	0.1604	-3.204	2.055	1.078	16	11	17	19	∞	8
N(2)	-0.5811	-0.0020	0.2044	-2.420	-0.046	1.374	14	11	16	17	4	3
N(3)	-0.1278	-0.0981	0.1873	-1.237	-0.908	1.259	13	9	13	16	∞	9
С	-0.2643	0.1332	0.1378	- 2·197	1.233	0.927	15	11	16	18	∞	8
				Zn[OC(NH	2)NHNH2]2C	2l ₂						
Zn	0	0	0	0	0	0						
Cl	0.3554	0.1995	0.1464	1.169	1.423	1.827	4	4	4	8	∞	8
0	<i>−</i> 0·0980	-0·1591	0.1123	-1.002	-1.135	1.401	11	9	9	7	6	7
N(1)	<i>−</i> 0·0491	-0.4497	0.1818	-1.065	-3.508	2.269	17	14	13	34	20	10
N(2)	0.2140	-0.3544	0.0838	0.723	-2.528	1.046	13	11	11	13	16	8
N(3)	0.2860	-0.2142	0.0224	1.367	-1.528	0.280	12	11	11	12	16	8
C	0.0163	-0.3133	0.1265	-0.482	- 2·235	1.579	16	11	10	32	16	8

Cu Cl

0

N(1)

N(2)

N(3)

Zn

Cl

O N(1) N(2)

N(3) C

first by Wilson's method, then by comparison with the calculated values.

For the zinc compound the intensities of h0l, $h1l, \dots h6l$ and 0kl, $1kl, \dots 4kl$ were collected from integrated and non-integrated Weissenberg photographs (Cu K α). 892 (possible 987) independent reflexions were observed. Discontinuous absorption effects were corrected graphically by Albrecht's (1939) method. The cross-section of the sample used to take the first series of photographs was a parallelogram with sides 0.017 cm and 0.014 cm long. The sample used to collect the second series of data was pentagonal in section, its longest diagonal being 0.06 cm.

The intensities from different layers were put on the same scale by cross-correlation (Dickerson, 1959), the absolute scale being established first by Wilson's method.

For both compounds the correction for the shape of the spots of non-equatorial layers was made following Phillips (1956).

Structure analysis and refinement

The steps in solving and refining the structures of both compounds were:

- (i) P(U, V, W) Patterson synthesis,
- (ii) Two cycles of three-dimensional Fourier synthesis,
- (iii) Four cycles of three-dimensional $(F_o F_c)$ synthesis,
- (iv) One isotropic cycle of Booth's differential synthesis,
- (v) Four anisotropic cycles of Booth's differential synthesis for the zinc complex, and seven anisotropic cycles for the copper complex.

The final coordinates with their e.s.d.'s (Cruickshank, 1949) and ratios (e.s.d.)/(shift) are listed in Table 1. The anisotropic thermal parameters, determined following Nardelli & Fava (1960), are reported in Table 2. In the case of the copper complex, they must be considered only as additional parameters for improving the agreement between the observed and calculated quantities, correlation of the different layers being neglected.

Table 2. Thermal parameters (Å²)

<i>B</i> ₁₁	B ₂₂	B ₃₃	B_{12}	B ₁₃	B ₂₃						
Cu[OC(NH ₂)NHNH ₂] ₂ Cl ₂											
4.11	2.84	6.56	0.38	2.07	0.65						
3.24	2.44	4.26	0.06	0.45	0.03						
3.96	2 ·13	4.65	0.24	1.07	0.87						
3.89	3.51	5.76	0.84	1.59	-0.50						
2.01	2.67	5.75	0.17	2.36	0.10						
2.64	2.58	5.15	0.48	1.67	0.16						
3.33	1.96	4.09	-0.45	1.49	0.05						
	Zn[OC(N	H ₂)NH	$NH_2]_2Cl_2$								
4.85	3.61	6.39	1.26	3.09	1.64						
3.27	3.23	4.10	0.18	1.24	0.28						
3.43	2.71	4.23	0.37	1.90	0.47						
4.39	2.99	4.38	-0.37	1.34	0.44						
3.02	2.24	4.22	0.61	1.09	0.84						
3.13	2.45	4.42	0.26	1.57	0.90						
3.95	2.25	2.66	-0.39	0.80	-0.32						

The final R(for observed reflexions only) and R'(including $F_o = \frac{1}{2}F_{\min}$, for unobserved reflexions when $F_c \ge F_{\min}$.), with e.s.d.'s of the first derivatives of the electron density, are:

R = 15.2%
R' = 15.8%
$\sigma(A_h) = 1.1 \text{ e.Å}^{-4}$
$\sigma(A_k) = 1 \cdot 1$
$\sigma(A_l) = 0.8$

The observed and calculated values of the electron density and the second derivatives at the atomic peaks are compared in Table 3, in which the corresponding e.s.d.'s are quoted too.

The better general agreement observed for the copper complex is only apparent, being due to the scaling done for each layer separately. The two structures must be considered of about the same degree of refinement.

The F_c values reported in Table 4 are calculated with the final parameters of Tables 1 and 2, using the atomic scattering factors of Thomas & Umeda (1957) for Cu²⁺ and Zn²⁺, of Berghuis, Haanappel, Potters, Loopstra, MacGillavry & Veenendaal (1955) for Cl⁻, O, N and C.

Discussion

In both compounds each metal atom is surrounded by a *trans*-planar arrangement of two O and two N atoms lying at the corners of a distorted square. Semicarbazide acts as a bidentate ligand through O and hydrazinic N. The coordination is completed by two chlorine atoms which are on opposite sides of the square, so that the whole polyhedron can be described as an octahedron distorted to a bipyramid.

The molecular complexes are very similar, and yet the crystals are not isostructural. Figs. 1 and 2, which are diagrammatic projections of the structures on planes perpendicular to [100], show clearly the different packing of the molecular complexes. Distances and angles in the coordination polyhedra are as follows:

	Cu[OC(NH ₂) NHNH ₂] ₂ Cl ₂	Zn[OC(NH ₂) NHNH ₂] ₂ Cl ₂
M–Cl	2·845 ± 0·005 Å	2·594 <u>+</u> 0·004 Å
M–O	1.97 ± 0.01	2.06 ± 0.01
M-N(3)	1.99 ± 0.01	2.07 ± 0.01
O-M-N(3)	$83.0 \pm 0.4^{\circ}$	79.9 $\pm 0.4^{\circ}$
CI-M-O	89.1 ± 0.3	92.5 ± 0.3
Cl-M-N(3)	86.5 ± 0.4	90.8 ± 0.3

The standard deviations are calculated from the formulae of Darlow & Cochran (1961) for bond lengths and of Darlow (1960) for angles.

Distances in the coordination polyhedra agree well with those found in other copper(II) and zinc compounds with similar coordination.

The M-O and M-N(3) distances are equal in each compound, but significantly shorter in the copper complex $[t_o = (l_1 - l_2)/(\sigma_1^2 + \sigma_2^2)^{\frac{1}{2}} = 6 \cdot 3 > 3 \cdot 3$ for M-O; $t_o = 4 \cdot 2 > 3 \cdot 3$ for M-N(3); significance test of Cruickshank & Robertson, 1953].

The ratio M–Cl/M–O = 1.44 for the copper complex is much larger than the same ratio (1.26) for the zinc complex, as a consequence of the Jahn–Teller effect in Cu^{2+} .

The comparison of distances and angles in semicarbazide coordinated by Cu^{2+} and Zn^{2+} with those found in semicarbazide hydrochloride (Nardelli, Fava & Gir-

		-				• •		
		Q	$-A_{hh}$	$-A_{kk}$	-Au	Ank	Ani	Aki
			Cu[OC(N	JH ₂)NHNI	$H_2_2Cl_2$			
Cu	obs.	45.8	381	511	261	· _7	52	14
	calc.	46.6	387	512	266	-7	52	15
Cl	obs.	28.4	252	323	169	-15	7	-1
	calc.	28.7	254	323	173	-15	9	0
0	obs.	11.6	100	119	65	-3	11	3
	calc.	11.7	102	119	68	-3	12	3
N(1)	obs.	7.5	66	79	40	2	5	-3
	calc.	7.6	65	79	42	1	4	-2
N(2)	obs.	9.1	73	83	42	7	9	-10
	calc.	9.1	71	82	42	7	8	-11
N(3)	obs.	9.1	78	102	54	- 3	10	0
``	calc.	9.3	79	102	55	-3	10	0
С	obs.	8.1	68	82	42	- 5	5	0
	calc.	8.2	69	83	44	- 5	5	0
	e.s.d.	0.3	5	4	3	3	2	2
			ZnIOC(N	NHA)NHN	HələClə			
Zn	obs.	53.5	530	549	466	35	218	61
	calc.	55.4	523	544	461	30	207	56
Cl	obs.	31.9	317	321	298	5	102	3
<u> </u>	calc.	32.7	316	316	296	4	100	4
0	obs.	12.8	114	119	112	-1	46	10
Ŭ.	calc.	13.1	114	120	112	-2	45	11
N(1)	obs.	9.2	75	81	75	0	28	4
	calc.	9.4	74	80	73	0	26	5
N(2)	obs.	11.0	98	107	89	11	28	2
	calc.	11.2	98	107	88	11	27	1
N(3)	obs.	10.9	106	103	92	7	37	5
- ()	calc.	11.0	106	102	91	7	36	4
С	obs.	10.0	81	106	98	3	24	2
-	calc.	10.0	79	106	96	3	23	2
	e.s.d.	0.4	5	5	4	3	3	2

Table 3. Atomic neak heigh	hts (e. Å-3).	<i>curvatures</i> (e	. Å–5) and	'e.s.d.'s
----------------------------	---------------	----------------------	------------	-----------

Table 4(a). Observed and calculated structure factors for Cu[OC(NH₂)NHNH₂]₂Cl₂

A minus sign after an F_o means 'less than'.

1234567890123456789012345678012345678012345678012345601234567891234567891234567891234567812345671234567123456123011223	1	
000000000000000000000000000000000000000	E 1	
$\begin{array}{c} 376\\ 4474\\ 4779\\ 40-\\ 3271\\ 2485\\ 37-\\ 2485\\ 37-\\ 2419\\ 286\\ 37-\\ 2419\\ 286\\ 37-\\ 2419\\ 286\\ 37-\\ 2419\\ 286\\ 37-\\ 27-\\ 632\\ 363\\ 630\\ 281\\ 122\\ 122\\ 286\\ 419\\ 286\\ 79\\ 322\\ 285\\ 447\\ 27-\\ 164\\ 40-\\ 116\\ 2593\\ 465\\ 335\\ 20-\\ 116\\ 295\\ 447\\ 27-\\ 164\\ 40-\\ 116\\ 2593\\ 446\\ 995\\ 545\\ 335\\ 120-\\ 100\\ 226\\ 122\\ 122-\\ 100\\ 122\\ 122-\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100\\ 10$	376	Lan L
$\begin{array}{c} 522\\ -4445\\ +43948\\ -229\\ 85045\\ -5055\\ -16\\ 29\\ -4445\\ +4229\\ 85045\\ -5055\\ -16\\ 29\\ -224\\ +42332\\ -4445\\ -229\\ 85045\\ -5055\\ -16\\ -10\\ -10\\ -10\\ -10\\ -10\\ -10\\ -10\\ -10$	522	
0 010 313 313 313 314 514 514 514 514 514 514 514 514 514 5	Ā	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1	
$\begin{array}{c} 155\\ 050\\ 181\\ 110\\ 120\\ 110\\ 110\\ 110\\ 110\\ 110\\ 11$	' ⁰ " o	1.00
$\begin{array}{c} 180\\ 371\\ 819\\ 9621\\ 395\\ 859\\ 1523\\ 9523\\ 1202\\ 961\\ 1395\\ 859\\ 1523\\ 91202\\ 9$	10 ¹ e	
יור אוא איז איז איז איז איז איז איז איז איז אי	1	
444444444444444444444666666666666666666	4 1	
$\begin{array}{c} 69646137225338426494803977-1\\ 120230-234425-426-265-1\\ 120238426494803977-1\\ 12023-23425-426-265-1\\ 22058262-265-1\\ 2205826-265-1\\ 22056$	69 69	1
$\begin{array}{c} 766\\ +352\\ +352\\ +376\\ +352\\ +376\\ +352\\ +376\\ +352\\ +376\\ +352\\ +376\\ +352\\ $	76	
- 1- 0 310 41+ MM MM - 1- 0 0100 41- 310 614 41+ MM -1- 0 0100 41- 310 010 41+ MM MM -1- 0 0110 41+ MM MM -1- 0 00 41- 310 71+ 41+ MM MM -1- 0 00 41- 310 41+ MM	Ā	
4444444444446666666666666666666668888888	4 2	
$\begin{array}{c} 229\\ 229\\ 398\\ 313\\ 313\\ 313\\ 313\\ 313\\ 313\\ 313\\ 31$	232	1.00
$\begin{array}{c} 222\\ 9204\\ 3176\\ 652\\ 339\\ 9119\\ 4201\\ 1183\\ 622\\ 971\\ 159\\ 848\\ 4201\\ 1183\\ 622\\ 971\\ 159\\ 848\\ 4201\\ 1185\\ 979\\ 1288\\ 4201\\ 1185\\ 979\\ 1288\\ 4201\\ 1185\\ 979\\ 1288\\ 4201\\ 1185\\ 979\\ 1288\\ 4201\\ 1185\\ 979\\ 1288\\ 4201\\ 1185\\ 979\\ 1288\\ 4201\\ 1185\\ 979\\ 1288\\ 4201\\ 1185\\ 979\\ 1288\\ 4201\\ 1288\\ 1018\\ 1288\\ 1018\\ 1288\\ 1018\\ 1288\\ 1018\\ 1288\\ 1018\\ 1288\\ 1018\\ 1288\\ 1018\\ 1288\\ 1018\\ 1288\\ 1018\\ 1288\\ 1018\\ 1288\\ 1018\\ 1288\\ 1018\\ 1288\\ 1018\\ 1288\\ 1018\\ 1288\\ 1018\\ 1288\\ 1018\\ 1288\\ 1018\\ 1288\\ $	¹⁰ e	
י ס אוט איז אוא אוא שוא סט מומא אוא שוא סט מומי אוא שוא סט מומי שוא אוא שוא סט מעומי אוא שוא שוא סט מעומי אוא שוא סט מעומי אוא	л 8	
5777777777777777999999999999991111111111	5 2	
$ \begin{array}{c} 16-2 \\ 42 \\ 1307 \\ 42 \\ 497 \\ 71 \\ 10 \\ 22 \\ 56 \\ 15 \\ 16 \\ 64 \\ 477 \\ 13 \\ 23 \\ 80 \\ 16 \\ 82 \\ 17 \\ 51 \\ 135 \\ $	16-	1.00
$\begin{array}{c} 27 \\ -132 \\ -2868866866848273888930131105597802276563124389344130722142893445332653546535465331277629761231221438934130155976123122143893445326535465354653536553565563566556665566666666$	⁷⁰ c	
שוש אוש אויד אוא אויד בי משמשות מוא אויד משמשות מוא אויד בי משמשות מוא אויד משמשות משמשות משמשות משמשות מוא אויד משמשות משמש	п 1	
99999991000000000000000000000000000000	Z 1	
$\begin{array}{c} 158\\ 1257\\ 289\\ 315\\ 595\\ 265\\ 285\\ 2254\\ 1244\\ 299\\ 530-5\\ 265\\ 285\\ 2254\\ 1244\\ 299\\ 530-5\\ 265\\ 2154\\ 240\\ 27-2\\ 27-2\\ 176\\ 926-5\\ 210\\ 27-2\\ 27-2\\ 176\\ 926-5\\ 210\\ 27-2\\$	158	1
$\begin{array}{c}145\\1248\\351\\929\\-2283\\2-78\\1279\\-228278\\1279\\22958\\21710\\22958\\229$	10Fc	
ט מומ אני אות אות יוד ס מקיד מוט מות איד מוט מות איד ס מומ איד ס מומואיד ס מומואיד ס מומואיד מי אות איד ס מקומט מות איד משיומים איד מומ אות איד ס מקומט מות איד משיומים איד מומ אות איד מ	л	
222222222224444444444444444444444444444	к I 2 Л	
$\begin{array}{c} 37\\ 17\\ 275\\ 229-\\ 225\\ 229-\\ 225\\ 2230\\ 211\\ 427\\ 528\\ 229-\\ 225\\ 221\\ 227\\ 460\\ 706\\ 80\\ 210\\ 72\\ 60\\ 81\\ 706\\ 821\\ 729-\\ 60\\ 821\\ 729-\\ 60\\ 821\\ 729-\\ 7$	10 F ol	1
$\begin{array}{c} -268\\ 2617\\ 2235\\ 2617\\ 2237\\ 1955\\ 1957\\ 1962\\ 2237\\ 1955\\ 1957\\ 1962\\ 2237\\ 1955\\ 1957\\ 1962\\ 2237\\ 1957\\ 1962\\ 2237\\ 1957\\ 1962\\ 2237\\ 1957\\ 1962\\ 2237\\ 1957\\ 1962\\ 2237\\ 1957\\ 1962\\ 2237\\ 1957\\ 1962\\ 2237\\ 1957\\ 1957\\ 1957\\ 1962\\ 2237\\ 1957\\$	-26	

Table 4(a) (cont.)

k 1 10Fo 10Fc	h l	k 1 10 F ₀ 1	of _c h	¥ 1	107 101	c h	k	1	1070	10 F c	h	k	1 10	F 10F	c h	k	1 10 7 0	10 F c	ħ	k l	1020	10F _c
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 212 3345 0 1 1 22 33 44 55	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	742 742 750 758 717 718 718 718 718 718 718 71	1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0 11 214 33 44 5551617 0 11 214 33	55555555555777777	ちちちちちちちちちちちちちちちちちちちち	136 26- 121 69 25 104 161 47 262 12 150 24- 20- 104 33 192 38 25- 131	126 -3 101 84 -28 140 135 60 214 -14 128 44 74 107 -37 171 42 -4 159	13 4141510 0 1 1 10 M 1 1 N N M 4 4	7777799999222222222	2 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	ס לוסוטול אוף גווע עור ס אליוסוס גו	22222444444444444444	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-88 -53 -136 24 145 -23 -140 -33 66 77 60 -38 -123 -24 62 22	111 NN MM 414101017 0 111 NNMM415	666666666888888888888888888888888888888	25- 76 23 24- 25- 25- 25- 25- 25- 25- 25- 24- 29 24- 29 24- 29 24- 29	5 -65 -22 -7 -13 -22 -14 -23 -14 -23 -14 -23 -17 -38 -17 -38 -17

8 35 19aldi, 1963), shows that the coordination makes no appreciable difference to the bond distances and angles (Table 5 and Fig. 3); the small difference observed for the C-N(2)-N(3) angle has only minor statistical significance.

h

67 ġ 0

However, the distortion from planarity observed in semicarbazide hydrochloride (N(3) is 0.44 Å out of the plane of the other heavy atoms), is not present in the coordinated molecule (Table 6): semicarbazide is quite planar in the zinc complex, and only small deviations from planarity (of minor statistical significance) are observed in the copper complex. This fact seems to confirm the hypothesis that the distortion observed in semicarbazide hydrochloride is due to the interactions with Cl⁻'s involving the $-N(3)H_3^+$ group.

There are no variations in the intermolecular contacts $O \cdots N(3)$.

The planes of the semicarbazide molecules are slightly tilted with respect to the planes of coordination; the [MON(3)] - [ON(1)N(2)N(3)C] dihedral angles are

Fig. 1. Diagrammatic projection of the structure of Cu[OC(NH₂)NHNH₂]₂Cl₂ along [100].

SEMICARBAZIDE COMPLEXES OF COPPER(II) AND ZINC CHLORIDES

496

Table 4(b). Observed and calculated structure factors for Zn[OC(NH₂)NHNH₂]₂Cl₂

A minus sign after an F_0 means 'less than'.

hk 1 10F _o 10F _c	hk 1 10F 10F c	hk 1 10F0! 10Fc	hk 1 10Fol 10Fc	hk 1 10F 10Fc	hk 1 10Fo 10Fc	hk 1 10F ₀ 10F _c
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 4 4 257 333 1 4 4 288 331 1 4 4 288 3287 957 2 4 4 198 217 0 3 4 4 152 158 4 4 4 152 158 4 4 4 152 158 4 4 4 505 201 5 2 6 4 92 97 1 5 4 4 52 6 77 1 5 6 4 92 99 1 5 6 4 92 99 1 5 6 4 92 99 1 6 4 82 88 83 5 6 4 123 135 6 6 4 92 99 1 7 8 4 196 162 0 9 6 153 14 1 6 2 88 83 5 7 1 88 4 196 162 0 9 7 18 8 4 196 162 0 9 7 18 8 4 196 162 0 9 9 9 9 9 9 9 1 8 4 196 162 0 9 0 6 153 14 1 8 4 196 162 0 9 9 9 9 1 8 4 196 162 0 9 0 6 153 543 1 7 2 8 8 4 196 162 0 9 0 6 153 543 1 7 2 8 3 3 6 6 4 28 1 8 8 4 196 162 0 9 0 6 6 1361 133 2 7 3 6 6 4 28 3 3 6 6 4 143 135 1 7 2 8 3 0 0 6 6 557 3 0 0 6 6 657 3 0 0 0 6 6 1361 133 2 0 0 6 6 657 3 0 0 0 6 6 1361 133 2 0 0 6 6 657 3 0 0 0 6 6 1361 133 2 0 0 6 6 657 3 0 0 0 6 6 1361 133 2 0 0 6 6 657 3 0 0 0 6 121 175 2 2 6 6 2549 318 3 0 0 0 6 1221 175 2 2 6 6 2549 318 3 0 0 0 6 6 124 1 7 2 2 6 2549 318 4 2 6 6 26 1 7 2 2 6 2549 318 4 2 6 6 26 1 7 2 2 6 2549 318 3 4 6 6 104 112 3 7 4 6 6 1079 163 2 2 6 6 284 3 7 4 6 6 104 112 3 7 4 6 6 1079 163 3 4 4 6 104 112 3 7 4 4 8 106 16 184 4 4 8 8 106 18 13 4 4 4 8 106 16 184 4 4 8 8 106 18 8 4 4 4 8 106 18 8 4 4 4 8 106 18 8 4 4 4 8 106 100 100 100 100 100 100 100 100 100	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 1 & 6 & 356 & -403 \\ 3 & 5 & 6 & -403 \\ 1 & 6 & 500 & 198 \\ 5 & 773 & 398 \\ 4 & 4 & 1 & 6 & 103 \\ 5 & 773 & 5 & 6 \\ 1 & 10 & -125 \\ 1 & 1 & 6 & 136 & -773 \\ 1 & 1 & 6 & 136 & -773 \\ 1 & 1 & 6 & 136 & -773 \\ 1 & 1 & 6 & 136 & -773 \\ 1 & 1 & 6 & 136 & -773 \\ 1 & 1 & 6 & 136 & -773 \\ 1 & 1 & 6 & 136 & -773 \\ 1 & 1 & 6 & 136 & -773 \\ 1 & 1 & 6 & 136 & -773 \\ 1 & 1 & 6 & 136 & -773 \\ 1 & 1 & 6 & 136 & -773 \\ 1 & 1 & 6 & 136 & -773 \\ 1 & 1 & 6 & 136 & -773 \\ 1 & 1 & 6 & 136 & -773 \\ 1 & 1 & 6 & 136 & -773 \\ 1 & 1 & 6 & 136 & -773 \\ 1 & 1 & 1 & 6 & 136 & -773 \\ 1 & 1 & 1 & 6 & 132 & -774 \\ 1 & 1 & 1 & 1 & 100 \\ 1 & 1 & 1 & 100 \\ 1 & 1 & 1 & 100 \\ 2 & 1 & 1 & 2 \\ 2 & 1 & 100 \\ 2 & 1 & 1 & 100 \\ 2 & 1 & 1 & 100 \\ 2 & 1 & 1 & 2 \\ 2 & 1 & 1 & 100 \\ 2 & 1 & 1 & $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 4(b) (cont.)

Fig. 2. Diagrammatic projection of the structure of Zn[OC(NH₂)NHNH₂]₂Cl₂ along [100].

Fig. 3. Bond lengths and angles for semicarbazide in different compounds. (a) Cu[OC(NH₂)NHNH₂]₂Cl₂ (b) Zn[OC(NH₂)NHNH₂]₂Cl₂ (c) OC(NH₂)NHNH₃Cl.

Table 5.	Comparison	of bondlengths	and angles for	· semicarbazide	molecule in metal	complexes
		and in	semicarbazide	hydrochloride		

	CHOCONILL MULTINE LOS	7-IOCONTENTE LOI		/T TT)	OCONTRACTOR OF	() TTT TT
	$Cu[OC(NH_2)NHNH_2]_2Cl_2$	$Zn[OU(NH_2)NHNH_2]_2U_2$	$(t_0) = 11$	(1-11) averaged*	UC(NH ₂)NHNH ₃ CI	$(t_0) \prod_{i=1}^{n} v_i$
	(I)	(II)		(III)	(IV)	
C0	1.23 ± 0.02 Å	1.23 ± 0.02 Å	0.00	1·23 ± 0·01 Å	1.23 ± 0.02 Å	0.00
C–N(1)	1.31 ± 0.02	1.33 ± 0.02	0.71	1.32 ± 0.01	1.35 ± 0.02	1.34
C-N(2)	1.37 ± 0.02	1.35 ± 0.02	0.71	1.36 ± 0.01	1.37 ± 0.02	0.45
N(2) - N(3)) 1.47 ± 0.02	1.42 ± 0.02	1.77	1.45 ± 0.01	1.42 ± 0.02	1.34
$0 \cdots N(3)$	3) 2.62 ± 0.01	2.65 ± 0.02	1.34	2.63 ± 0.01	2.66 ± 0.02	1.34
O-C-N(1)) $123.1 \pm 1.2^{\circ}$	$122.9 \pm 1.5^{\circ}$	0.10	$123.1 \pm 0.9^{\circ}$	$123.1 \pm 1.5^{\circ}$	0.00
N(1)-C-N	$N(2) 115.0 \pm 1.4$	116.0 ± 1.2	0.54	115.8 ± 0.9	113.6 ± 1.3	1.39
N(2)-C-C	121.9 ± 1.2	$121 \cdot 1 \pm 1 \cdot 1$	0.49	121.6 ± 0.8	123.3 ± 1.4	1.05
C-N(2)-N	$N(3) 113.0 \pm 1.2$	117.8 ± 1.0	3.07	115.9 ± 0.8	113.4 ± 1.2	1.74

* Averaging formula used: $(\Sigma l_i \sigma_i^{-2} / \Sigma \sigma_i^{-2}) \pm (\Sigma \sigma_i^{-2})^{-\frac{1}{2}}$

Table 6. Analysis of the planarity in coordinated semicarbazide

Equation of the plane referred to orthogonal axes: $m_1x' + m_2y' + m_3z' = d$

		Cu[OC(NH ₂)NHNH ₂] ₂ Cl ₂				Zn[OC(NH ₂)NHNH ₂] ₂ Cl ₂		
best plane through		ON(1)N(2)N(3)C			ON(1)N(2)C		ON(1)N(2)N(3)C	
m_1		0.35	65	0.36	87		0.4459	
m_2		0.2875		0.2630		0.3369		
m_3		0.88	90	0.89	16		0.8292	
d		0.3874		0.3255		0.3325		
	$\sigma_1(\text{\AA})^*$	^	Δ/σ		Δ/σ_{\perp}	$\sigma_1(\text{\AA})^*$	⊿(Å)	Δ/σ_{\perp}
0	0.010	-0.016	$-1.\overline{60}$	0`005	-0.50	0.010	-0.001	-0.10
N(1)	0.016	0.050	1.25	-0.002	-0.31	0.014	-0.001	-0.50
N(2)	0.016	-0.042	-2.63	-0.002	-0.31	0.011	0.002	0.48
N(3)	0.012	0.030	2.50	(0.102)	(8.50)	0.010	-0.006	-0.60
C	0.016	0.008	0.20	0.015	0.94	0.012	0.009	0.71
$\Sigma(\Delta/\sigma_{\perp})^2$			17.54		1.32			1.35
$\chi^2_{95\%}$			5.99		3.84			5.99

* $\sigma_{\perp} = \{m_1^2 \sigma^2(x') + m_2^2 \sigma^2(y') + m_3^2 \sigma^2(z')\}^{\frac{1}{2}}$

 164.5° and 168.0° for the copper and zinc complexes respectively.

The possible orientation of N-H bonds is indicated in the stereographic projections of Figs. 4 and 5, which represent the environments of N atoms in the copper and zinc complexes respectively. Of course, these environments are different, as the packing is different in the two compounds.

The following contacts can be considered as hydrogen bonds:

Fig. 4. Cu[OC(NH₂)NHNH₂Cl₂. Stereographic projection of the environment of (a) N(1), viewed down N(1)-C, (b) N(2), viewed down H-N(2), (c) N(3), viewed down N(3)-N(2).

Fig. 5. Zn[OC(NH₂)NHNH₂]₂Cl₂. Stereographic projection of the environment of (a) N(1), viewed down N(1)-C, (b) N(2). viewed down H-N(2), (c) N(3), viewed down N(3)- N(2),

For Cu[OC(NH₂)NHNH₂]₂Cl₂

N(1)-Cl(x-1, y, z)	3·34 ± 0·02 Å
N(1)-Cl $(\bar{x}, \frac{1}{2}+y, \frac{1}{2}-z)$	3.36 ± 0.01
N(3)-Cl($\bar{x}, \bar{y} - \frac{1}{2}, \frac{1}{2} - z$)	3.24 ± 0.01
For Zn[OC(NH ₂)NHNH ₂] ₂ Cl ₂	
N(1)-Cl($\bar{x}, y - \frac{1}{2}, \frac{1}{2} - z$)	3·35 ± 0·02 Å
N(2)–Cl(x, $y - 1, \bar{z}$)	3.31 ± 0.01

The other packing contacts shorter than 3.5 Å are:

$Cu[OC(NH_2)NHNH_2]_2Cl_2$						
Cl–O	3·43 ± 0·01 Å					
$Cl-O(\bar{x}, \bar{y}, \bar{z})$	3.48 ± 0.01					
$Cl-N(2)(\bar{x}, \bar{y}, 1-z)$	3.18 ± 0.02					
Cl–N(3)	3.37 ± 0.01					
O-N(1)($x, \frac{1}{2} - y, z - \frac{1}{2}$)	3·14 <u>+</u> 0·02					
$O-N(3)(\bar{x}, \bar{y}, \bar{z})$	2.96 ± 0.02					
$O-N(3)(\bar{x}, \frac{1}{2}+y, \frac{1}{2}-z)$	3·23 <u>+</u> 0·01					
$N(1)-N(1)(x, \frac{1}{2}-y, \frac{1}{2}+z)$	3·48 <u>+</u> 0·03					
$Zn[OC(NH_2)NHNH_2]_2Cl_2$						
Cl-O	3·38 ± 0·01 Å					
$Cl-O(\bar{x}, \bar{y}, \bar{z})$	3·25 <u>+</u> 0·01					
Cl-N(1)(x, 1+y, z)	3.38 ± 0.02					
Cl-N(3)	3.34 ± 0.01					
$Cl-N(3)(\bar{x}, \bar{y}, \bar{z})$	3.30 ± 0.01					

$Cl-N(3)(1-x, \bar{y}, \bar{z})$	3.34 ± 0.01
$O-N(1)(\bar{x}, \frac{1}{2}+y, \frac{1}{2}-z)$	2.98 ± 0.02
$O-N(3)(\bar{x},\bar{y},\bar{z})$	3.17 ± 0.01

The authors are indebted to the Consiglio Nazionale delle Ricerche for financial support.

References

- ALBRECHT, G. (1939). Rev. Sci. Instrum. 10, 221.
- BERGHUIS, J., HAANAPPEL, IJ. M., POTTERS, M., LOOP-STRA, B. O., MACGILLAVRY, C. H. & VEENENDAAL, A. L. (1955). Acta Cryst. 8, 478.
- CRUICKSHANK, D. W. J. (1949). Acta Cryst. 2, 65.
- CRUICKSHANK, D. W. J. & ROBERTSON, A. P. (1953). Acta Cryst. 6, 698.
- DARLOW, S. F. (1960). Acta Cryst. 13, 683.
- DARLOW, S. F. & COCHRAN, W. (1961). Acta Cryst. 14, 1250.
- DICKERSON, R. E. (1959). Acta Cryst. 12, 610.
- FREEMAN, H. C., SMITH, J. E. W. L. & TAYLOR, J. C. (1961) Acta Cryst. 14, 407.
- NARDELLI, M. & FAVA, G. (1960). Ric. Sci. 30, 898.
- NARDELLI, M., FAVA, G. & GIRALDI, G. (1963). Acta Cryst. 16, A 60.
- PHILLIPS, D. C. (1956). Acta Cryst. 9, 819.
- THOMAS, L. H. & UMEDA, K. (1957). J. Chem. Phys. 26, 293.

Acta Cryst. (1965). 19, 500 The Crystal and Molecular Structure of cis, cis-1, 2, 3, 4-Tetraphenylbutadiene

By I.L. KARLE AND K.S. DRAGONETTE

U.S. Naval Research Laboratory, Washington, D.C., U.S.A.

(Received 7 December 1964)

The crystal structure of *cis*, *cis*-1,2,3,4-tetraphenylbutadiene has been determined by application of the symbolic addition procedure. The space group is P_{21}/c with cell dimensions: a=5.87, b=21.31, c=8.13 Å, and $\beta=97^{\circ}$ 05'. Since Z=2, the asymmetric unit is one-half the molecule. The butadiene chain is planar and the C-C distances show the typical effects of conjugation. One pair of phenyl rings forms an angle of 34° with the plane of the chain and the other pair of phenyl rings make an angle of 75°. The angle between the planes of the phenyl rings is 69°.

Introduction

Phenyl rings substituted on the same or adjacent atoms usually rotate about the connecting bonds so as to maximize the intramolecular distances between them. The present investigation on *cis*, *cis*-1,2,3,4-tetraphenylbutadiene,

was undertaken to determine the degree of rotation

of the phenyl rings from the plane of the butadiene

chain, especially the degree of rotation of the two rings

at the extremes of the butadiene group where the effects of conjugation may tend to keep the rings coplanar with the chain. Since the diffraction data show that the molecule has a center of symmetry, the atoms have been numbered as shown above.

Experimental

Crystals of tetraphenylbutadiene are white needles elongated parallel to the *a* axis. Intensity data were obtained with copper radiation from multiple film, equi-inclination Weissenberg photographs with the crystal mounted on the *a* axis. All cell dimensions were determined from hk0 and h0l precession photographs. The space group was found to be $P2_1/c$ and the cell parameters are: